SnO *A'*Π−*X'*Σ⁺ 电子跃迁(4-0) 振动带光谱中的微扰

占 诚 哉(复旦大学物理系)

提 要

本文测定了 SnO A'II - X'2+(v'=4←v''=0)的激光感生荧光(LIF), 同时标识了光谱中 Sn¹¹⁸O 和 Sn¹²⁰O 归属的转动结构,首次报道了同位素位移对光谱中微扰中心的影响,并用 Kovacs 方法对微扰特性 作了分析。

关键词: 激光光谱;分子光谱。

一、引 盲

早期的光谱工作表明通过火焰与电弧放电过程都能产生自由基 SnO,它的电子基态与 周期表中同一族的其它氧化物(CO, SiO, PbO等)的基态相同 均属 ' Σ *。以后 Connelly^{L1} 与 Lagervist^{L21}分别发现 SnO 的 $A'\Pi$ 电子态振动能级 $\nu'=1$ 和 $\nu'=2$ 中出现转动能级 的 微 扰。因为天然 Sn 中存在许多同位素 (112, 0.95%; 1140.65%; 115, 0.34%; 116, 14.2%; 117, 7.6%; 118, 24.0%; 119, 8.6%; 120, 33.0%; 122, 4.6% 与 124, 6.0%),其中不少同 位素的丰度又相近,所以光谱谱线很复杂。此外,在 $A'\Pi-X'\Sigma^+$ 电子跃迁中一些谱带还是 现微扰,故光谱中的转动结构极难标识。多数分析是在高转动量子数 J 时进行的。本文测 定了 SnO $A'\Pi-X'\Sigma^+$ ($\nu'=4\leftarrow\nu''=0$)的激光感生荧光(LIF),同时对 Sn¹¹⁸O 和 Sn¹²⁰O 的 $A'\Pi-X'\Sigma^+$ (L-O) 谱带进行了标识(这种标识一直延伸到低 J 值),发现它们的光谱中出现 强的微扰,而且这种微扰的中心对 Sn¹¹⁸O 与 Sn¹²⁰O 来说 J 值不同。并用 Kovacs 方法对微 扰中心的特性和微扰态的转动常数作了分作。

二、实验与装置

自由基 SnO 原则上可以采用 O³P 与 SnOl₄ 的反应来制备, 可是实验中并未观察到 SnO 的激光感生荧光。本实验的 SnO 自由基是在微 波 放 电的 流 管 ⁵³ 中 产 生 的, 经 Ar 稀释 (1% v/v) 的 Sn(CH₃)₄ 与由微波放电产生的 O³P 在流管中反应得到基态的 SnO, 总气压约 0.5 Torr, 体系的压力用 222 型气压计(Baratron)测量。当 SnO 自由基泵浦经过荧光池时, 用倍频的染料激光激发。英国 J. K 公司的 Nd: YAG 激光泵 浦 的 染 料 激光 器 为 Hänsch

收稿日期: 1986年9月26日; 收到修改稿日期: 1987年2月20日

型。它由振荡级与放大级组成。在振荡级中插有扩束望远镜和 6 m/m 空气间隙的 F. P 标 准具。染料激光器采用压力调谐(用氮气作为调压气体时,染料激光的调谐幅度为 3Å)。染 料激光基频经 KDP 晶体倍频后线宽为 0.05 cm⁻¹。未经色散的荧光经过光学截止型(WG 360)滤色片用 9816B 光电倍增管(S 20,上升时间 2 ns)接收,随后信号输入 Boxcar 积分器 平均,再用 X-Y 记录仪记录。标准具间隙的气压通过压力传感器输入到记录仪的 X 轴。 为了除去 Sn(OH₃)₄ 与 O³P 反应时化学发光所产生的连续背景。我们在 PMT 前用了透镜 和狭缝来消除化学发光的影响,以提高探测的信噪比。

光谱波长的绝对校正是用 I₂的荧光激发光谱作为两级标准,即在实验中同时记录 I₃ 的荧光光谱与 SnO 的 LIF 谱, I₂ 的 LIF 谱与 I₂ 的吸收谱相似,具有相同的谱线位置,只 是 LIF 谱中由于激发态中可能的预解离引起某些强度上的变化,而 I₂ 的吸收光谱已 经 有 了绝对的标识。

三、结果与讨论

1. SnOA'Ⅱ-X'∑*(v'=4←v"=0)谱带的特征

我们在 314.7~316.4 nm 所得到的激光激发光谱,其带头在 314.7 nm 附近,与 A'II($\nu'=4$) $\rightarrow X' \Sigma^+$ ($\nu''=0$)的跃迁相附合。 从 SnO 的 A'II 与 $X'\Sigma^+$ 的位能曲线根据 Frank-Conton 原理知道这一跃迁具有较强的谱线。实验证明 4-0 带确实有很强的激光感生 荧光 信号,它比 5-0, 6-0, 2-0 带要强得多。虽然 SnO 是较重的分子,其转动常数小,但在我们 的激光线宽条件下光谱甚至在带头附近仍能很好 分辨。 图 1 为 天然 SnO(A-X)4-0 带 的 部分激光激发光谱。正如 ' $II-'\Sigma^+$ 跃迁所预期的^{[43},光谱中出现 P,Q,R支。因为较高能级 的转动常数 B'4 小于较低能级的转动常数 B'',所以带头在高频端形成。 光谱 一直延伸到

Fig. 1 Laser excitation spectra of 4-0 band of SnO (A-X), natural SnO. The spectra for Sn¹¹⁸O and Sn¹²⁹O have been assigned

J>47, 并与 8-0 带重叠。由于 Σ^+ 的 $\nu''=0$ 能级是不微扰的, 这样我们可以通过基态谱项的并合差(忽略离心常数 D_o):

$$R(J-1) - P(J+1) = F''(J+1) - F''(J-1) = \Delta_2 F(J)$$

$$= 4 B_v'(J+\frac{1}{2}), \qquad (1)$$

$$R(J) - Q(J+1) = Q(J) - P(J+1) + s$$

$$\cong 2 B_v''(J+1) \qquad (2)$$

报

来对整个光谱进行转动结构的标识,式中 J 表示产生谱线的较低能级的量子数。根据上述关系,从光谱得到的 $B''_0(Sn^{130}O) = (0.3547 \pm 0.0006) cm^{-1}, B''_0(Sn^{138}O) = (0.3563 \pm 0.0012) cm^{-1},由于转动常数 <math>B = \frac{\hbar}{8\pi^2 O \mu} \left[\frac{T}{\gamma}\right]^2$,它与分子的折合质量成反比,所以 $B''_0(Sn^{138}O)$ 稍大于 $B''_0(Sn^{120}O)$ 。标识中证明并合亏损 s 为零,说明较高能级A'II态的A双重性可以忽略。表1列出了 $Sn^{118}O(A-X)$ 4-0 带 $P_{\gamma}Q_{\gamma}R$ 支的波数以及它与 $Sn^{120}O$ 对应谱线的同位素位移。较高能级 $\nu'=4$ 的并合关系得出的 B'_4 随J的变化而变化,表明 $\nu'=4$ 中的转动能级出现微扰。从表1也可以看到 $Sn^{118}O$ 4-0带随着J值的增加, $P_{\gamma}Q_{\gamma}R$ 支的

Table 1	Vaccum wavenumber and assignments for 4-0 band of SniisO(A-X)),
	and Sn ¹¹⁸ O-Sn ¹²⁰ O isotopic shifts	

J	$R(J)/cm^{-1}$	δv²	$Q(J)/cm^{-1}$	δνί	P(J)/cm ⁻¹	δνί
6	31770,26	3. 25			-	
7	70.01	3 .32	31765.35	3.28		
8	69.59	3.39	64.3 6	3.35	31759.66	3.27
9	69.06	3. 53	63.1 6	3.38	57.91	3.28
10	68.33	3.61	61.93	3.49	56.04	3.35
11	67.51	3.75	60.46	3.54	54.06	3.42
12	66.38	3.82	58.95	3.72	51.90	3.48
13	6 5.28	4.02	57.14	3.82	49.64	3.66
14	64.10	4.32	55.30	4.03	47.25	3.84
15	62.39	4.66	53.29	4.31	44.62	4.00
16	60.69	5.08	50.97	4.60	41.84	4.21
17	58.61	5.43	48.49	4.94	38.77	4.46
18	56.21	-8.22	45.77	5.36	3 5.62	4.87
19	53.60	-8.33	42.83	-8.09	32.20	5.29
2 0	50.53	-9.30	39.49	-8.22	28.35	-8.40
21	61.47	4.20	35.79	-8.85	24.37	-8.39
22	58.65	3.67	4 5.77	4.12	20.04	-8.84
23	55.86	3.21	42.21	3.56	29.41	4.12
24	53.29	3.00	38.79	3.24	25.08	3.53
25	50.71	2.89	35.56	3.05	20.99	3.17
2 6	48.06	2.75	32.14	2.83	16.94	2.93
27	45.33	2.63	28.85	2.72	12.95	2.82
2 8	42.63	2.57	25. 43	2.61	08.94	2.72
29	39.81	2.50	21.99	2.55	04.77	2.56
3 0	36.86	2.44	18.41	2.46	00.66	2.54

波数开始都相应递减,但到 R(21)、Q(22)、P(23)时(它们对应于同一个上能级 J'=22),各 支的波数均突然增加,再逐渐递减。这一变化过程说明光谱中有强的微扰,而微扰中发生在 J'=21 与 22之间。因为被微扰能级与微扰能级相互推斥的结果, $J' \ge 22$ 的能级发生了向 上的位移(J' < 22能级向下位移),所以使得 $J' \ge 22$ 的能级对应的谱线均向高频端位移。对 于 $Sn^{120}O$ 同样存在这种微扰,只是微扰中心发生在 J'=18与 19 之间。由于 $A'\Pi \nu'=4$ 中 $Sn^{118}O$ 与 $Sn^{120}O$ 有着不同的微扰中心,在微扰作用过程中 $Sn^{118}O$ 的 J'=19, 20, 21 能级 和 $Sn^{120}O$ 的 J'=19, 20, 21 能级朝反方向移动,使得对应于这些能级的谱线,它们的同位 素位移 $\delta\nu'$ (表示 $P_{v}Q_{v}R$ 支中各谱线的同位素位移,如 $\delta\nu'=P(J)_{Sn^{10}O}$)均出现负值。

2. Kovacs 方法对微扰的分析

对于上述讨论的 SnO(A-X)4-0 带光谱中的微扰,我们用 Kovacs 提出的 B'-B" 方 法^{III}进行了处理。因为与跃迁有关的 'Π 和 'Σ⁺ 都是单态,它们的谱项可方便地表示为:

$$F(J) = \text{const} + BJ(J+1) - DJ^2(J+1)^2,$$
(3)

·若取一级近似忽略离心谱项,这样Q支的波数为:

$$Q(J) = F'(J) - F''(J) = \nu_0 + (B' - B'')J(J+1), \qquad (4)$$

$$Q(J-1) = F'(J-1) - F''(J-1) = v_0 + (B'-B'')J(J-1)_o$$
(5)

即得:

$$f_{\varrho}(J) = \frac{Q(J) - Q(J-1)}{2J} = B' - B'',$$
(6)

类似地 P 与 R 支有表示式:

$$f_{P,R}(J) = \frac{P(J+1) - P(J) + R(J-1) - R(J-2)}{4J} = B' - B'',$$
(7)

应用这些表式我们可以从已经得到的 B'' 求得较高能级的转动常数 B'。若在光谱中没有微 扰, B'-B'' 与 J 作图应为水平的直线, 即 B' 不随 J 而改变, 但若光谱的 Q 支中有微扰出 现, 那么在微扰能级 (某 J 值) 附近将出现 B'-B'' (即 $f_Q(J)$) 的增加或减小。P、R 支中的微 扰也会得出同样的结果。 图 2 为 Sn¹²⁰O, Sn¹¹⁸O ($A'\Pi - X'\Sigma^+$) 电子 跃迁 4-0 带 $f_Q(J)$ 与 $f_{P,R}(J)$ 随 J 值的变化关系。可以看到 Sn¹²⁰O 在以 J=18 为中心处发生强的微扰。 这种 微扰同时影响 P、Q、R 支。在低 J 值时曲线仍未完全趋于水平,说明微扰一直影响到带头, 而 Sn¹¹⁸O 的 4-0 带微扰发生在不同的中心 J=21 处。 $f_Q(J)$ 和 $f_{P,R}(J)$ 都在同一曲线上 也说明在 SnO 'II 中 A 双重分裂,在实验误差范围内。在微扰能级 (J) 附近,被微扰态谱项 可表示为:

$$\frac{F_1}{F_2} = \frac{F_A + F_B}{2} \pm U(J),$$
(8)

此处

$$U(J) = \sqrt{\left(\frac{F_{A} - F_{B}}{2}\right)^{2} + |H_{AB}|^{2}}, \qquad (9)$$

式中 H_{AB} 为微扰矩阵元, A = B 表示两个微扰的电子态在微扰前的谱项。因微扰发生在上 $hgg(\nu'=4$ 的能级), 故

$$Q(J) = \frac{F'_{A}(J) + F'_{B}(J)}{2} - F''(J) - U(J), \qquad (10)$$

1_

$$Q(J) = \frac{Q(J) - Q(J-1)}{2J}$$

= $\frac{B'_{4} + B'_{B}}{2} - B'' + \frac{U(J-1) - U(J)}{2J}$ 。(11)
代入另一个微扰态有:

报

f

$$\frac{B_{B}}{B} - B'' + \frac{U(J-1) - U(J)}{2J},$$
(11)
代入另一个微扰态有:
 $f_{Q}^{*}(J) = \frac{Q'(J) - Q'(J-1)}{2J}$
 $= \frac{B'_{A} + B'_{B}}{2} - B'' - \frac{U(J-1) - U(J)}{2J},$ (12)

这里 $f_Q(J)$ 和 $f_Q^*(J)$ 分别可从正常线 Q(J) 与额外线 (extra line)Q'(J)计算而得。 B_A 是被微扰谱项的转 动常数, B_B 是微扰谱项的转动常数。在出现微扰的情 况下, 从(11)与(12)式可以得到:

$$\frac{f_Q(J) + f_Q^*(J)}{2} = \frac{B'_A + B'_B}{2} - B''_{\circ} \qquad (13)$$

这样我们从前面得出的被微扰的较高能级 $A'\Pi$ ($\nu'=4$)的转动常数 B'_4 和较低能级的转动常数 B'',即 使不知道微扰矩阵元的数值也可以计算微扰态的转动 常数 B_B (或记为 $B_P(X)$),即

 $B_P(X) = B_B = 2B'' - B_A + [f_s(J) + f_s^*(J)],$ (14) x = Q或 P, R_o 当然在计算 B_B 时,要在光谱中至少找 到两条额外线。根据图 2 可以看 出 当 $J \ge 35$ 时 曲 线 已趋于平坦,无论是 Sn¹¹⁸O,还是 Sn¹²⁰O 它们的 f_e

Fig. 2 Perturbation analysis of the 4-0 band of SnO (A-X)

值均已不随 J 而改变, 说明这些 J 所对应的能级不受微扰的影响。这样, 根据(11)式从 这些能级得到被微扰态较高能级的转动常数: B_A (Sn¹¹⁸O)=0.300 cm⁻¹, B_A (Sn¹³⁰O)= 0.298 cm⁻¹。表 2 为 Sn¹¹⁸O(A-X)4-0 带中发现的额外线,从这些额外线,应用前式计算得 B_P (Sn¹¹⁸O)=0.238±0.002 cm⁻¹。同样对于 Sn¹²⁰O 有 B_P (Sn¹²⁰O)=0.230±0.005 cm⁻¹。

Ј	<i>R</i> */cm ⁻¹	Q */cm [−] 1	P*/cm ⁻¹
21	31747.32	31731.63	
22	43.62	27.19	
23	39.57	22.39	31715.21
24	35.19	17.26	10,13
			4.61
			31699.00

Table 2 Extra lines for perturbed 4-0 band of Sn¹¹⁸O(A-X)

8. 微扰态特性的分析

 $'II-'\Sigma$ 的电子态跃迁一般为洪德情况(a)。根据微扰的选择规则,这时两个相互作用的 微扰态它们的 4A=0 或 ± 1 。若 $4A=\pm 1$,这是非均匀微扰的情况。这种微扰与转动耦合有 关,微扰作用强度与 J(J+1)成正比,在 J=0 时微扰为零。可是在 SnO(A'II) $\nu'=4$ 能级 的微扰情况下,(如图 2 所示)并不如此,在 $J \ge 35$ 时,微扰已趋于零,而在 J = 0 时这种微扰 依然存在。因此,我们推测它属于均匀微扰,即 $\Delta A = 0$ 的情况。根据 SnO 位能曲线,可能 的微扰电子态是 $A'\Pi$ 态下面的 ${}^{3}\Pi$,态,即 ${}^{8}\Pi$ (2), ${}^{8}\Pi$ (1), ${}^{8}\Pi$ (O⁺)与 ${}^{8}\Pi$ (O⁻)等。若微扰态 为 Π (O⁺)或 Π (O⁻),它们只能微扰 $A'\Pi$ 中的 A 双重分裂的一个分量,可是在 4-0 带光谱 中测量到的微扰同时影响 P, Q, B 支,故肯定不是这种情况,而 $b'{}^{3}\Pi$ (1) 也是不可能的,因为 b'-X 跃迁很强,但我们在光谱中观察到的一些额外谱线只有几条。所以最有可能的微扰状 态是 ${}^{8}\Pi$ (2)。 ${}^{3}\Pi$ (2)与 $'\Pi$ 之间的微扰作用虽不符合微扰的选择规则 $\Delta S = 0$,但这一规则并 不是严格的。 当然 SnO 的激发态可能是洪德情况(c)的耦合。 这时,微扰的选择规则为 $\Delta Q = 0$,可能使 $\nu' = 4$ 能级微扰的微扰态为 ${}^{8}\Delta(1)$ 。

参考文献

- [1] F. C. Connelly; Proc. Phys. Soc. London, 1933, 45, 780~791.
- [2] A. Lagerqvist, N. E. L. Nilsson and K. Wigartz; Arkiv Fysik, 1959, 15, No. 2, 521~530.
- [3] M. A. A. Clyne and M. C. Heaven; Chem. Phys., 1980, 51, No. 3 (Mar), 299~309.
- [4] G. Herzberg; "Molecular Spectra and Molecular Structure I. Spectra of Diatomic Molecules", (Van Nostrand-Reinhold, New York, 1950), 572.
- [5] I. Kovacs; "Structure in the Spectra of Diatomic Molecules", (A. Hilger Ltd., London, 1969), 287~301.

The perturbation in the 4–0 band of the SnO $A'\Pi - X'\Sigma^*$ electronic transition

LU CHENGZAI

(Department of Physics, Fudan University, Shanghai)

(Received 26 September 1986; revised 20 February 1987)

Abstract

In this paper, the measurement of the laser induced fluorescence (LIF) of SnO A'II- $X'\Sigma^+(\nu'=4\leftarrow\nu''=0)$ has been made. The rotational structures of the spectra were fully assigned both for Sn¹¹⁸O and for Sn¹²⁰O. We report the effect of isotope shift on the perturbation center for the first time. The characteristic of perturbation is also analysed by Kovacs method.

Key Words: Laser spectroscopy; Molecular spectroscopy.